Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Macromol Rapid Commun ; : e2400109, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38594026

RESUMO

This work reports a highly-strain flexible fiber sensor with a core-shell structure utilizes a unique swelling diffusion technique to infiltrate carbon nanotubes (CNTs) into the surface layer of Ecoflex fibers. Compared with traditional blended Ecoflex/CNTs fibers, this manufacturing process ensures that the sensor maintains the mechanical properties (923% strain) of the Ecoflex fiber while also improving sensitivity (gauge factor is up to 3716). By adjusting the penetration time during fabrication, the sensor can be customized for different uses. As an application demonstration, the fiber sensor is integrated into the glove to develop a wearable gesture language recognition system with high sensitivity and precision. Additionally, the authors successfully monitor the pressure distribution on the curved surface of a soccer ball by winding the fiber sensor along the ball's surface.

2.
Infect Immun ; 91(11): e0033723, 2023 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-37815369

RESUMO

Chlamydia psittaci is a human pathogen that causes atypical pneumonia after zoonotic transmission. We confirmed that C. psittaci infection induces oxidative stress in human bronchial epithelial (HBEs) cells and explored how this is regulated through miR-184 and the Wnt/ß-catenin signaling pathway. miR-184 mimic, miR-184 inhibitor, FOXO1 siRNA, or negative control sequence was transfected into HBE cells cultured in serum-free medium using Lipofectamine 2000. Then, prior to the cells were infected with C. psittaci 6BC, and the cells were treated with or without 30 µM Wnt/ß-catenin inhibitor ICG-001. Quantification of reactive oxygen species, malondialdehyde (MDA), superoxide dismutase (SOD), and glutathione was carried out according to the manufacturer's protocol using a corresponding assay kit. The outcome of both protein and gene was measured by western blotting or real-time fluorescence quantitative PCR. In C. psittaci-infected HBE cells, miR-184 was upregulated, while one of its target genes, FOXO1, was downregulated. ROS and MDA levels increased, while SOD and GSH contents decreased after C. psittaci infection. When miR-184 expression was downregulated, the level of oxidative stress caused by C. psittaci infection was reduced, and the Wnt/ß-catenin signaling pathway was inhibited. The opposite results were seen when miR-184 mimic was used. Transfecting with FOXO1 siRNA reversed the effect of miR-184 inhibitor. Moreover, when the Wnt/ß-catenin-specific inhibitor ICG-001 was used, the level of oxidative stress induced by C. psittaci infection was significantly suppressed. miR-184 can target FOXO1 to promote oxidative stress in HBE cells following C. psittaci infection by activation of the Wnt/ß-catenin signaling pathway.


Assuntos
Chlamydophila psittaci , MicroRNAs , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , Via de Sinalização Wnt/genética , beta Catenina/genética , beta Catenina/metabolismo , RNA Interferente Pequeno/metabolismo , Estresse Oxidativo , Proliferação de Células/genética , Superóxido Dismutase/metabolismo , Proteína Forkhead Box O1/genética , Proteína Forkhead Box O1/metabolismo
3.
Clin. transl. oncol. (Print) ; 25(7): 1929-1939, jul. 2023. ilus
Artigo em Inglês | IBECS | ID: ibc-222368

RESUMO

Helicobacter pylori is a kind of Gram-negative bacteria that parasitizes on human gastric mucosa. Helicobacter pylori infection is very common in human beings, which often causes gastrointestinal diseases, including chronic gastritis, duodenal ulcer and gastric cancer. MicroRNAs are a group of endogenous non-coding single stranded RNAs, which play an important role in cell proliferation, differentiation, autophagy, apoptosis and inflammation. In recent years, relevant studies have found that the expression of microRNA is changed after Helicobacter pylori infection, and then regulate the biological process of host cells. This paper reviews the regulation role of microRNAs on cell biological behavior through different signal pathways after Helicobacter pylori infection (AU)


Assuntos
Humanos , Infecções por Helicobacter/genética , Infecções por Helicobacter/microbiologia , Helicobacter pylori/genética , Helicobacter pylori/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Mucosa Gástrica/microbiologia , Transdução de Sinais , Inflamação
4.
J Cancer Res Clin Oncol ; 149(12): 10561-10583, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37286734

RESUMO

CLIC5 encoded protein associates with actin-based cytoskeletal and is increasingly thought to play significant roles in human cancers. We use TCGA and GEO to explore CLIC5 expression differences, mutation and DNA methylation, TMB, MSI, and immune cell infiltration. We verified the mRNA expression of CLIC5 in human ovarian cancer cells by real-time PCR and detected the expression of CLIC5 as well as immune marker genes in ovarian cancer by immunohistochemistry. The pan-cancer analysis showed that CLIC5 is highly expressed in several malignant tumors. In some cancers, CLIC5 expression in tumor samples is associated with poorer overall survival. For example, patients with ovarian cancer with high expression of CLIC5 have a poor prognosis. CLIC5 mutation frequency increased in all tumor types. The CLIC5 promoter is hypomethylated in most tumors. CLIC5 was associated with tumor immunity and different immune cells of different tumor types, such as CD8 + T cells, tumor-associated fibroblasts, macrophages, etc. CLIC5 was positively correlated with various immune checkpoints, and TMB and MSI were correlated with dysregulation of CLIC5 in tumors. The expression of CLIC5 in ovarian cancer was detected by qPCR and IHC, and the results were consistent with the bioinformatics results. There were a strong positive correlation between CLIC5 expression and M2 macrophage (CD163) infiltration and a negative correlation with CD8 + T-cell infiltration. In conclusions, our first pan-cancer analysis offered a detailed grasp of the cancerogenic functions of CLIC5 in a variety of malignancies. CLIC5 participated in immunomodulation and performed a crucial function in the tumor microenvironment.


Assuntos
Canais de Cloreto , Neoplasias Ovarianas , Feminino , Humanos , Fibroblastos Associados a Câncer , Linfócitos T CD8-Positivos , Canais de Cloreto/genética , Proteínas dos Microfilamentos , Neoplasias Ovarianas/genética , Prognóstico , Microambiente Tumoral
5.
Bioact Mater ; 27: 15-57, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37035422

RESUMO

Titanium (Ti) and its alloys have been widely used as orthopedic implants, because of their favorable mechanical properties, corrosion resistance and biocompatibility. Despite their significant success in various clinical applications, the probability of failure, degradation and revision is undesirably high, especially for the patients with low bone density, insufficient quantity of bone or osteoporosis, which renders the studies on surface modification of Ti still active to further improve clinical results. It is discerned that surface physicochemical properties directly influence and even control the dynamic interaction that subsequently determines the success or rejection of orthopedic implants. Therefore, it is crucial to endow bulk materials with specific surface properties of high bioactivity that can be performed by surface modification to realize the osseointegration. This article first reviews surface characteristics of Ti materials and various conventional surface modification techniques involving mechanical, physical and chemical treatments based on the formation mechanism of the modified coatings. Such conventional methods are able to improve bioactivity of Ti implants, but the surfaces with static state cannot respond to the dynamic biological cascades from the living cells and tissues. Hence, beyond traditional static design, dynamic responsive avenues are then emerging. The dynamic stimuli sources for surface functionalization can originate from environmental triggers or physiological triggers. In short, this review surveys recent developments in the surface engineering of Ti materials, with a specific emphasis on advances in static to dynamic functionality, which provides perspectives for improving bioactivity and biocompatibility of Ti implants.

6.
Clin Transl Oncol ; 25(7): 1929-1939, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36781601

RESUMO

Helicobacter pylori is a kind of Gram-negative bacteria that parasitizes on human gastric mucosa. Helicobacter pylori infection is very common in human beings, which often causes gastrointestinal diseases, including chronic gastritis, duodenal ulcer and gastric cancer. MicroRNAs are a group of endogenous non-coding single stranded RNAs, which play an important role in cell proliferation, differentiation, autophagy, apoptosis and inflammation. In recent years, relevant studies have found that the expression of microRNA is changed after Helicobacter pylori infection, and then regulate the biological process of host cells. This paper reviews the regulation role of microRNAs on cell biological behavior through different signal pathways after Helicobacter pylori infection.


Assuntos
Infecções por Helicobacter , Helicobacter pylori , MicroRNAs , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , Helicobacter pylori/genética , Helicobacter pylori/metabolismo , Infecções por Helicobacter/genética , Infecções por Helicobacter/microbiologia , Inflamação , Transdução de Sinais , Mucosa Gástrica/metabolismo
7.
ACS Appl Mater Interfaces ; 15(9): 11827-11836, 2023 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-36848290

RESUMO

Solar-driven interfacial evaporation technology has become an effective approach to alleviate freshwater shortage. To improve its evaporation efficiency, the pore-size dependence of the water transport rate and evaporation enthalpy in the evaporator should be further investigated. Based on the transportation of water and nutrients in natural wood, we facilely designed a lignocellulose aerogel-based evaporator using carboxymethyl nanocellulose (CMNC) cross-linking, bidirectional freezing, acetylation, and MXene-coating. The pore size of the aerogel was adjusted by controlling its CMNC content. When the channel diameter of the aerogel-based evaporator increased from 21.6 to 91.9 µm, the water transport rate of the proposed evaporator increased from 31.94 to 75.84 g min-1, while its enthalpy increased from 1146.53 to 1791.60 kJ kg-1. At a pore size of 73.4 µm, the evaporation enthalpy and water transport rate of the aerogel-based evaporator achieved a balance, leading to the best solar evaporation rate (2.86 kg m-2 h-1). The evaporator exhibited excellent photothermal conversion efficiency (93.36%) and salt resistance (no salt deposition after three cycles of 8 h). This study could guide the development of efficient solar-driven evaporators for seawater desalination.

8.
Front Immunol ; 13: 950884, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36238304

RESUMO

Hepatocellular carcinoma (HCC) responds poorly to standard chemotherapy or targeted therapy; hence, exploration for novel therapeutic targets is urgently needed. CEP192 protein is indispensable for centrosome amplification, which has been extensively characterized in both hematological malignancies and solid tumors. Here, we combined bioinformatics and experimental approaches to assess the potential of CEP192 as a prognostic and therapeutic target in HCC. CEP192 expression increased with tumor stage and was associated with poor clinicopathologic features, frequent recurrence, and higher mortality. Upon single-cell RNA sequencing, CEP192 was found to be involved in the proliferation and self-renewal of hepatic progenitor-like cells. This observation was further evidenced using CEP192 silencing, which prevented tumor cell proliferation and self-renewal by arresting cells in the G0/G1 phase of the cell cycle. Notably, CEP192 was highly correlated with multiple tumor-associated cytokine ligand-receptor axes, including IL11-IL11RA, IL6-IL6R, and IL13-IL13RA1, which could promote interactions between hepatic progenitor-like cells, PLVAP+ endothelial cells, tumor-associated macrophages, and CD4+ T cells. Consequently, CEP192 expression was closely associated with an immunosuppressive tumor microenvironment and low immunophenoscores, making it a potential predictor of response to immune checkpoint inhibitors. Taken together, our results unravel a novel onco-immunological role of CEP192 in establishing the immunosuppressive tumor microenvironment and provide a novel biomarker, as well as a potential target for therapeutic intervention of HCC.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Carcinoma Hepatocelular/patologia , Proteínas Cromossômicas não Histona/metabolismo , Células Endoteliais/metabolismo , Humanos , Inibidores de Checkpoint Imunológico , Interleucina-11 , Interleucina-13 , Interleucina-6 , Ligantes , Neoplasias Hepáticas/patologia , Prognóstico , Microambiente Tumoral
9.
Nat Metab ; 4(10): 1306-1321, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36192599

RESUMO

Extracellular vesicles play crucial roles in intercellular communication in the tumor microenvironment. Here we demonstrate that in hepatic fibrosis, TGF-ß stimulates the palmitoylation of hexokinase 1 (HK1) in hepatic stellate cells (HSCs), which facilitates the secretion of HK1 via large extracellular vesicles in a TSG101-dependent manner. The large extracellular vesicle HK1 is hijacked by hepatocellular carcinoma (HCC) cells, leading to accelerated glycolysis and HCC progression. In HSCs, the nuclear receptor Nur77 transcriptionally activates the expression of depalmitoylase ABHD17B to inhibit HK1 palmitoylation, consequently attenuating HK1 release. However, TGF-ß-activated Akt functionally represses Nur77 by inducing Nur77 phosphorylation and degradation. We identify the small molecule PDNPA that binds Nur77 to generate steric hindrance to block Akt targeting, thereby disrupting Akt-mediated Nur77 degradation and preserving Nur77 inhibition of HK1 release. Together, this study demonstrates an overlooked function of HK1 in HCC upon its release from HSCs and highlights PDNPA as a candidate compound for inhibiting HCC progression.


Assuntos
Carcinoma Hepatocelular , Vesículas Extracelulares , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patologia , Células Estreladas do Fígado/metabolismo , Hexoquinase/metabolismo , Neoplasias Hepáticas/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proliferação de Células , Linhagem Celular Tumoral , Vesículas Extracelulares/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Receptores Citoplasmáticos e Nucleares/metabolismo , Microambiente Tumoral
10.
Regen Biomater ; 9: rbac046, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35855110

RESUMO

Hierarchical surface structures with micro-nano scale play a crucial role in regulation of cell proliferation and osteogenic differentiation. It has been proven that cells are extremely sensitive to the nanoscaled structure and show multifarious phenotypes. Though a vital function of microstructure on osseointegration has been confirmed, the cell performances response to different microscaled structure is needed to be further dissected and in depth understood. In this work, the ordered micro-nano hierarchical structures with varying micro-scaled pits were precisely fabricated on titanium successfully by the combination of electrochemical, chemical etching and anodization as well. In vitro systematical assessments indicated that the micro-nano multilevel structures on titanium exhibited excellent cells adhesion and spreading ability, as well as steerable proliferation and osteogenic differentiation behaviors. It is shown that smaller micro-pits and lower roughness of the hierarchical structures enabled faster cell propagation. Despite cell growth was delayed on micro-nano titanium with relatively larger cell-match-size micro-pits and roughness, osteogenic-specific genes were significantly elevated. Furthermore, the alkaline phosphatase activity, collagen secretion and extracellular matrix mineralization of MC3T3-E1 on multi-scaled titanium were suppressed by a large margin after adding IWP-2 (an inhibitor of Wnt/ß-catenin signal pathway), indicating this pathway played a crucial part in cell osteogenic differentiation modulated by micro-nano structures.

11.
Asian J Pharm Sci ; 17(3): 333-352, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35782323

RESUMO

The hair follicle is not only a critical penetration route in percutaneous absorption but also has been recognized to be a target for hair follicle-associated disorders, such as androgenetic alopecia (AGA) and acne vulgaris. Hair follicle-targeting drug delivery systems allow for controlled drug release and enhance therapeutic efficacy with minimal side effects, exerting a promising method for the management of hair follicle-associated dysfunctions. Therefore, they have obtained much attention in several fields of research in recent years. This review gives an overview of potential follicle-targeting drug delivery formulations currently applied based on the particularities of the hair follicles, including a comprehensive assessment of their preclinical and clinical performance.

12.
Nano Lett ; 22(10): 3856-3864, 2022 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-35503660

RESUMO

The intrinsic magnetic topological insulator MnBi2Te4 has attracted significant interest recently as a promising platform for exploring exotic quantum phenomena. Here we report that, when atomically thin MnBi2Te4 is deposited on a substrate such as silicon oxide or gold, there is a very strong mechanical coupling between the atomic layer and the supporting substrate. This is manifested as an intense low-frequency breathing Raman mode that is present even for monolayer MnBi2Te4. Interestingly, this coupling turns out to be stronger than the interlayer coupling between the MnBi2Te4 atomic layers. We further found that these low-energy breathing modes are highly sensitive to sample degradation, and they become drastically weaker upon ambient air exposure. This is in contrast to the higher energy optical phonon modes which are much more robust, suggesting that the low-energy Raman modes found here can be an effective indicator of sample quality.

13.
Infect Immun ; 90(5): e0007922, 2022 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-35435728

RESUMO

Chlamydia psittaci is an important pathogen that causes chronic and atypical pneumonia in humans. Autophagy and the unfolded protein response (UPR) are important mechanisms for regulating the growth of infectious parasitic pathogens in living cells. Here, we explored whether C. psittaci infection induced autophagy via the UPR and the effect of these cellular responses on the survival and replication of C. psittaci in human bronchial epithelial cells (HBEs). Not only were the numbers of autophagosomes and the expression of LC3-II and Beclin1 increased following C. psittaci infection of HBEs, but also the expression of p62 (also called sequestosome-1) was downregulated. Moreover, after C. psittaci infection, the UPR and UPR sensors PERK/eIF2α and IRE1α/XBP1 were activated, but not the ATF6 pathway. When either Bip siRNA was used to block normal initiation of the UPR, or activation of the PERK and IER1α pathways was blocked with specific inhibitors GSK2606414 and 4µ8C, the level of autophagy caused by C. psittaci infection was significantly inhibited. Furthermore, blocking activation of the UPR and associated pathways significantly reduced the number of C. psittaci inclusions. Our research suggests that the UPR, via the PERK and IRE1α, but not ATF6 signaling pathways, regulates HBE-cell autophagy induced by C. psittaci infection and the replication of C. psittaci.


Assuntos
Chlamydophila psittaci , Endorribonucleases/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Fator 6 Ativador da Transcrição/metabolismo , Autofagia , Estresse do Retículo Endoplasmático , Células Epiteliais/metabolismo , Humanos , Proteínas Serina-Treonina Quinases/genética , eIF-2 Quinase/genética , eIF-2 Quinase/metabolismo
14.
Mol Cell Biochem ; 476(12): 4265-4275, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34398353

RESUMO

MicroRNAs (miRNAs) are a type of endogenous non-coding short-chain RNA, which plays a crucial role in the regulation of many essential cellular functions, including cellular migration, proliferation, invasion, autophagy, oxidative stress, apoptosis, and differentiation. The lung can be damaged by pathogenic microorganisms, as well as physical or chemical factors. Research has confirmed that miRNAs and lung cell apoptosis can affect the development and progression of several lung diseases. This article reviews the role of miRNAs in the development of lung disease through regulating host cell apoptosis.


Assuntos
Pneumopatias/genética , Pneumopatias/patologia , MicroRNAs/genética , Animais , Apoptose/fisiologia , Autofagia/fisiologia , Movimento Celular/fisiologia , Proliferação de Células/fisiologia , Humanos , Pneumopatias/metabolismo
15.
Asian J Pharm Sci ; 16(3): 265-279, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-34276818

RESUMO

The penetration behavior of topical substances in the skin not only relates to the transdermal delivery efficiency but also involves the safety and therapeutic effect of topical products, such as sunscreen and hair growth products. Researchers have tried to illustrate the transdermal process with diversified theories and technologies. Directly observing the distribution of topical substances on skin by characteristic imaging is the most convincing approach. Unfortunately, fluorescence labeling imaging, which is commonly used in biochemical research, is limited for transdermal research for most topical substances with a molecular mass less than 500 Da. Label-free imaging technologies possess the advantages of not requiring any macromolecular dyes, no tissue destruction and an extensive substance detection capability, which has enabled rapid development of such technologies in recent years and their introduction to biological tissue analysis, such as skin samples. Through the specific identification of topical substances and endogenous tissue components, label-free imaging technologies can provide abundant tissue distribution information, enrich theoretical and practical guidance for transdermal drug delivery systems. In this review, we expound the mechanisms and applications of the most popular label-free imaging technologies in transdermal research at present, compare their advantages and disadvantages, and forecast development prospects.

16.
ACS Nano ; 15(8): 13759-13769, 2021 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-34279913

RESUMO

Androgenetic alopecia (AGA) is highly prevalent in current society but lacks effective treatments. The dysregulation of the hair follicle niche induced by excessive reactive oxygen species (ROS) and insufficient vascularization in the perifollicular microenvironment is the leading cause of AGA. Herein, we designed a ceria nanozyme (CeNZ)-integrated microneedles patch (Ce-MNs) that can alleviate oxidative stress and promote angiogenesis simultaneously to reshape the perifollicular microenvironment for AGA treatment. On the basis of the excellent mechanical strength of Ce-MNs, the encapsulated CeNZs with catalase- and superoxide-mimic activities can be efficiently delivered into skin to scavenge excessive ROS. Moreover, the mechanical stimulation induced by the administration of MNs can remodel the microvasculature in the balding region. Compared with minoxidil, a widely used clinical drug for AGA treatment, Ce-MNs exhibited accelerated hair regeneration in the AGA mouse model at a lower administration frequency without inducing significant skin damage. Consequently, such a safe and perifollicular microenvironment-shaping MNs patch shows great potential for clinical AGA treatment.


Assuntos
Alopecia , Minoxidil , Animais , Camundongos , Espécies Reativas de Oxigênio/farmacologia , Alopecia/tratamento farmacológico , Minoxidil/farmacologia , Minoxidil/uso terapêutico , Cabelo , Folículo Piloso
17.
Regen Biomater ; 8(4): rbab025, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34168893

RESUMO

With the rapid development of biomedical sciences, contradictory results on the relationships between biological responses and material properties emerge continuously, adding to the challenge of interpreting the incomprehensible interfacial process. In the present paper, we use cell proliferation on titanium dioxide nanotubes (TNTs) as a case study and apply machine learning methodologies to decipher contradictory results in the literature. The gradient boosting decision tree model demonstrates that cell density has a higher impact on cell proliferation than other obtainable experimental features in most publications. Together with the variation of other essential features, the controversy of cell proliferation trends on various TNTs is understandable. By traversing all combinational experimental features and the corresponding forecast using an exhausted grid search strategy, we find that adjusting cell density and sterilization methods can simultaneously induce opposite cell proliferation trends on various TNTs diameter, which is further validated by experiments. This case study reveals that machine learning is a burgeoning tool in deciphering controversial results in biomedical researches, opening up an avenue to explore the structure-property relationships of biomaterials.

18.
Microb Pathog ; 154: 104837, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33689813

RESUMO

BACKGROUND: Chlamydia psittaci is a pathogen of birds that can cause zoonotic disease in mammals including pneumonia in humans. MicroRNAs (miRNAs) are a class of small non-coding RNA fragments with a length of about 22 nt, which play an important role in regulating gene expression after transcription. Chlamydia infection can cause changes in host cell miRNA expression, but the potential biological function of miRNAs in C. psittaci infection and pathogenesis is not well understood. METHODS: Small RNA sequencing (sRNA-Seq) technology was used to characterise miRNA expression in human bronchial epithelial (HBE) cells after C. psittaci infection, and differentially expressed miRNAs were identified. Candidate target genes for these miRNAs were then functionally annotated by Gene Ontology (GO) analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis. The sRNA-Seq results were partially validated by quantitative real time polymerase chain reaction (qRT-PCR) and miRNA-target networks were constructed using visualization software. RESULTS: We identified 151 differentially expressed miRNAs (46 known miRNAs and 105 novel miRNAs) in C. psittaci-infected HBE cells, of which 140 were upregulated and 11 were downregulated. Of these, 17 known miRNAs were significantly upregulated and two were downregulated using P < 0.05 and |log2FoldChange|>1.5 as threshold criteria. GO enrichment results showed that the predicted targets of these differentially expressed miRNAs were mainly involved in transcriptional regulation and ATP binding. KEGG pathway analysis suggested that the candidate target genes were involved in several important signaling pathways such as MAPK, ErbB, cGMP-PKG, cAMP, mTOR, GNRH, oxytocin, PI3K-Akt and AMPK, which are primarily related to biological processes such as transcription and signal transduction. The qRT-PCR results for miR-2116-3p, miR-3195, miR-663a, miR-10401-5p, miR-124-3p, miR-184, miR-744-5p and hsa-miR-514b-5p were consistent with the sRNA-Seq data. CONCLUSIONS: A large amount of miRNA expression profile data relating to C. psittaci infection was obtained, which provides a useful experimental and theoretical basis for further understanding the pathogenic mechanisms of C. psittaci infection.


Assuntos
Chlamydophila psittaci , MicroRNAs , Chlamydophila psittaci/genética , Células Epiteliais , Perfilação da Expressão Gênica , Humanos , MicroRNAs/genética , Fosfatidilinositol 3-Quinases , Análise de Sequência de RNA
19.
World J Microbiol Biotechnol ; 37(3): 45, 2021 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-33554321

RESUMO

As a significant constituent in biosphere, bacteria have a great influence on human activity. The detection of pathogen bacteria is closely related to the human health. However, the traditional methods for detection of pathogenic bacteria are time-consuming and difficult for quantification, although they are practical and reliable. Therefore, novel strategies for rapid, sensitive, and cost-effective detection are in great demand. Aptamer is a kind of oligonucleotide that selected by repeated screening in vitro or systematic evolution of ligands by exponential enrichment (SELEX) technology. Over the past years, owing to high affinity and specificity of aptamers, a variety of aptamer-based biosensors have been designed and applied for pathogen detection. In this review, we have discussed the recent advances on the applications of aptamer-based biosensors in detection of pathogenic bacteria. In addition, we also point out some problems in current methods and look forward to the further development of aptamer-based biosensors for pathogen detection.


Assuntos
Aptâmeros de Nucleotídeos/análise , Bactérias/isolamento & purificação , Técnicas Biossensoriais/instrumentação , Bactérias/genética , Bactérias/patogenicidade , Técnicas Eletroquímicas , Humanos , Ligantes
20.
Biosens Bioelectron ; 169: 112567, 2020 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-32947084

RESUMO

Self-powered flexible sensors play an increasingly important role in wearable and even implantable electronic devices. Silk protein is an ideal material for flexible sensors because of its terrific biocompatibility and controllable degradation rate. Here, we overcome the problem of mechanical flexibility and poor electrical conductivity of proteins, and develop a highly transparent, biocompatible, full-degradable and flexible triboelectric nanogenerator (Bio-TENG) for energy harvesting and wireless sensing. First, the mechanical flexibility of the silk protein film is greatly enhanced by the mesoscopic functionalization of regenerated silk fibroin (RSF) via adding glycerol and polyurethane (PU). Second, hollow silver nanofibers are constructed on the silk film to form an air-permeable, stretchable, biocompatible and degradable thin layer and utilized as friction electrode. The obtained Bio-TENG demonstrates high transparency (83% by one Ag gird layer), stretchability (Ɛ = 520%) and an instantaneous peak power density of 0.8 W m-2 that can drive wearable electronics. Besides, the Bio-TENG can work as artificial electronic skin for touch/pressure perception, and also for wirelessly controlling Internet of Things as a switch.


Assuntos
Técnicas Biossensoriais , Dispositivos Eletrônicos Vestíveis , Eletrodos , Eletrônica , Nanotecnologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...